DATA SHEET

74LVC245A; 74LVCH245A
Octal bus transceiver with direction pin with 5 Volt tolerant input/outputs (3-state)

Product specification
Supersedes data of 1997 Dec 19

Octal bus transceiver with direction pin with 5 Volt tolerant input/outputs (3-state)

 74LVC245A;
FEATURES

- 5 V tolerant inputs/outputs for interfacing with 5 V logic
- Wide supply voltage range from 1.2 to 3.6 V
- CMOS low power consumption
- Direct interface with TTL levels
- Inputs accept voltages up to 5.5 V
- Complies with JEDEC standard no. 8-1A
- High-imp
edance when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- Bushold on all data inputs (74LVCH245A only)
- Specified from -40 to $+85^{\circ} \mathrm{C}$ and -40 to $+125^{\circ} \mathrm{C}$.

DESCRIPTION

The 74LVC245A/74LVCH245A is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

Inputs can be driven from either 3.3 or 5 V devices. In 3-state operation outputs can handle 5 V . These features allow the use of these devices as translators in a mixed 3.3 and 5 V environment.

The 74LVC245A/74LVCH245A is an octal transceiver with non-inverting 3 -state bus compatible outputs in both send and receive directions.

The 74LVC245A/74LVCH245A has an output enable (OE) input for easy cascading and a send/receive (DIR) input for direction control. $\overline{\mathrm{OE}}$ controls the outputs so that the buses are effectively isolated.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay A_{n} to $\mathrm{B}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$ to A_{n}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	2.9	ns
C_{I}	input capacitance		4.0	pF
$\mathrm{C}_{\text {I/O }}$	input/output capacitance		10.0	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per buffer	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ;$ notes 1 and 2	15	pF

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation $\left(P_{D}\right.$ in $\left.\mu W\right)$.
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
C_{L} = output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volts;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.
2. The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{Cc}.

Octal bus transceiver with direction pin with 5 Volt tolerant input/outputs (3-state)

ORDERING INFORMATION

TYPE NUMBER	TEMPERATURE RANGE	PACKAGE			
		PINS	PACKAGE	MATERIAL	CODE
74LVC245AD		20	SO	plastic	SOT163-1
74LVC245ADB	-40 to $+125^{\circ} \mathrm{C}$	20	SSOP	plastic	SOT339-1
74 LVC 245 APW	-40 to $+125^{\circ} \mathrm{C}$	20	TSSOP	plastic	SOT360-1
74 LVCH 245 AD	-40 to $+125^{\circ} \mathrm{C}$	20	SO	plastic	SOT163-1
74 LVCH 245 ADB	-40 to $+125^{\circ} \mathrm{C}$	20	SSOP	plastic	SOT339-1
74 LVCH 245 APW	-40 to $+125^{\circ} \mathrm{C}$	20	TSSOP	plastic	SOT360-1

FUNCTION TABLE

See note 1.

INPUT		INPUTS/OUTPUT	
$\overline{\mathbf{O E}}$	DIR	$\mathbf{A}_{\boldsymbol{n}}$	$\mathbf{B}_{\boldsymbol{n}}$
L	L	$\mathrm{A}=\mathrm{B}$	input
L	H	input	$\mathrm{B}=\mathrm{A}$
H	X	Z	Z

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level;

L = LOW voltage level;
X = don't care;
$\mathrm{Z}=$ high-impedance OFF-state.

PINNING

PIN	SYMBOL	DESCRIPTION
1	DIR	direction control
2	$\mathrm{~A}_{0}$	data inputs/output
3	$\mathrm{~A}_{1}$	data inputs/output
4	$\mathrm{~A}_{2}$	data inputs/output
5	$\mathrm{~A}_{3}$	data inputs/output
6	$\mathrm{~A}_{4}$	data inputs/output
7	$\mathrm{~A}_{5}$	data inputs/output
8	$\mathrm{~A}_{6}$	data inputs/output
9	$\mathrm{~A}_{7}$	data inputs/output
10	GND	ground (0 V)
11	$\mathrm{~B}_{7}$	data inputs/output
12	$\mathrm{~B}_{6}$	data inputs/output
13	$\mathrm{~B}_{5}$	data inputs/output
14	$\mathrm{~B}_{4}$	data inputs/output
15	$\mathrm{~B}_{3}$	data inputs/output
16	$\mathrm{~B}_{2}$	data inputs/output
17	$\mathrm{~B}_{1}$	data inputs/output
18	$\mathrm{~B}_{0}$	data inputs/output
19	OE_{2}	output enable input (active LOW)
20	$\mathrm{~V}_{\mathrm{CC}}$	supply voltage

Octal bus transceiver with direction pin with 5 Volt

Fig. 1 Pin configuration.

Fig. 2 Logic symbol (IEEE/IEC).

Fig. 3 Logic symbol.

Octal bus transceiver with direction pin with 5 Volt tolerant input/outputs (3-state)

 74LVC245A;
RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage	for maximum speed performance	2.7	3.6	V
		for low-voltage applications	1.2	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	5.5	V
$\mathrm{~V}_{\mathrm{O}}$	output voltage	output HIGH or LOW state	0	$\mathrm{~V}_{\mathrm{CC}}$	V
		output 3-state	0	5.5	V
$\mathrm{~T}_{\mathrm{amb}}$	operating ambient temperature		-40	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	$\mathrm{V}_{\mathrm{CC}}=1.2$ to 2.7 V	0	20	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V	0	10	$\mathrm{~ns} / \mathrm{V}$

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage		-0.5	+6.5	V
I_{IK}	input diode current	$\mathrm{V}_{\mathrm{I}}<0$	-	-50	mA
$\mathrm{~V}_{\mathrm{I}}$	input voltage	note 1	-0.5	+6.5	V
I_{OK}	output diode current	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{O}}<0$	-	± 50	mA
$\mathrm{~V}_{\mathrm{O}}$	output voltage	output HIGH or LOW state; note 1	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
	output 3-state; note 1	-0.5	+6.5	V	
I_{O}	output source or sink current	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}	-	± 50	mA
$\mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{GND}}$	V_{CC} or GND current		-	± 100	mA
$\mathrm{~T}_{\text {Stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$	
$\mathrm{P}_{\text {tot }}$	power dissipation per package SO	above $70{ }^{\circ} \mathrm{C}$ derate linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $60{ }^{\circ} \mathrm{C}$ derate linearly with $5.5 \mathrm{~mW} / \mathrm{K}$	-	-	500

Note

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Octal bus transceiver with direction pin with 5 Volt

DC CHARACTERISTICS

Over recommended operating conditions; voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS		Tamb (${ }^{\text {C }}$)					UNIT
		OTHER	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	-40 to +85			-40 to +125		
				MIN.	TYP. ${ }^{(1)}$	MAX.	MIN.	MAX.	
V_{IH}	HIGH-level input voltage		1.2	V_{CC}	-	-	V_{CC}	-	V
			2.7 to 3.6	2.0	-	-	2.0	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		1.2	-	-	0	-	0	V
			2.7 to 3.6	-	-	0.8	-	0.8	V
V_{OH}	HIGH-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A} \end{aligned}$	2.7 to 3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$	V_{CC}	-	$\mathrm{V}_{\mathrm{CC}}-0.3$	-	V
		$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} \\ \hline \end{array}$	2.7	$\mathrm{V}_{\mathrm{CC}}-0.5$	-	-	$\mathrm{V}_{C C}-0.65$	-	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA} \\ & \hline \end{aligned}$	3.0	$\mathrm{V}_{\mathrm{CC}}-0.6$	-	-	$\mathrm{V}_{C C}-0.75$	-	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA} \\ & \hline \end{aligned}$	3.0	$\mathrm{V}_{\mathrm{CC}}-0.8$	-	-	$\mathrm{V}_{\mathrm{CC}}-1$	-	V
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A} \\ & \hline \end{aligned}$	2.7 to 3.6	-	0	0.2	-	0.3	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA} \\ & \hline \end{aligned}$	2.7	-	-	0.4	-	0.6	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA} \end{aligned}$	3.0	-	-	0.55	-	0.8	V
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND; note 2	3.6	-	± 0.1	± 5	-	± 20	$\mu \mathrm{A}$
l Oz	3-state output OFF-state current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}; notes 2 and 3; $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} \text { or GND }$	3.6	-	± 0.1	± 5	-	± 20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {off }}$	power off leakage supply	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0.0	-	± 0.1	± 10	-	± 20	$\mu \mathrm{A}$
$\mathrm{I} C \mathrm{C}$	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \end{aligned}$	3.6	-	0.1	10	-	40	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per in. pin	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \end{aligned}$	2.7 to 3.6	-	5	500	-	5000	$\mu \mathrm{A}$

Octal bus transceiver with direction pin with 5 Volt

SYMBOL	PARAMETER	TEST CONDITIONS		Tamb (${ }^{\circ} \mathrm{C}$)					UNIT
		OTHER	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	-40 to +85			-40 to +125		
				MIN.	TYP. ${ }^{(1)}$	MAX.	MIN.	MAX.	
$\mathrm{I}_{\text {BHL }}$	bushold LOW sustaining current	$\begin{aligned} & \mathrm{V}_{1}=0.8 \mathrm{~V} \text {; notes } 4, \\ & 5 \text { and } 6 \end{aligned}$	3.0	75	-	-	60	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BHH }}$	bushold HIGH sustaining current	$\mathrm{V}_{\mathrm{I}}=2.0 \mathrm{~V} \text {; notes 4, }$ $5 \text { and } 6$	3.0	-75	-	-	-60	-	$\mu \mathrm{A}$
IBHLO	bushold LOW overdrive current	notes 4, 5 and 7	3.6	500	-	-	500	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BHHO }}$	bushold HIGH overdrive current	notes 4, 5 and 7	3.6	-500	-	-	-500	-	$\mu \mathrm{A}$

Notes

1. All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. For bushold parts, the bushold circuit is switched off when $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}$ allowing 5.5 V on the input terminal.
3. For I/O ports the parameter I_{OZ} includes the input leakage current.
4. Valid for data inputs of bushold parts (LVCH) only.
5. For data inputs only, control inputs do not have a bushold circuit.
6. The specified sustaining current at the data input holds the input below the specified $\mathrm{V}_{\text {}}$ level.
7. The specified overdrive current at the data input forces the data input to the opposite logic input state.

Octal bus transceiver with direction pin with 5 Volt tolerant input/outputs (3-state)

 74LVC245A;
AC CHARACTERISTICS

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

SYMBOL	PARAMETER	WAVEFORMS	$\mathrm{Tamb}{ }^{\circ} \mathrm{C}$)					UNIT
			-40 to +85			-40 to +125		
			MIN.	TYP.	MAX.	MIN.	MAX.	
$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$								
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay A_{n} to B_{n}; B_{n} to A_{n}	see Figs 4 and 6	-	17	-	-	-	ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time $\overline{O E}$ to $A_{n} ; \overline{O E}$ to B_{n}	see Figs 5 and 6	-	22	-	-	-	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable time $\overline{O E}$ to $A_{n} ; \overline{O E}$ to B_{n}	see Figs 5 and 6	-	12	-	-	-	ns
$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$								
tehL $/$ tpLH	propagation delay A_{n} to B_{n}; B_{n} to A_{n}	see Figs 4 and 6	1.5	3.4	7.3	1.5	9.5	ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time $\overline{O E}$ to $A_{n} ; \overline{O E}$ to B_{n}	see Figs 5 and 6	1.5	5.0	9.5	1.5	12.0	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable time $\overline{O E}$ to $A_{n} ; \overline{O E}$ to B_{n}	see Figs 5 and 6	1.5	3.6	8.0	1.5	10.0	ns
$\mathrm{V}_{\mathrm{CC}}=3.0$ to 3.6 V ; note 1								
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay A_{n} to $B_{n} ; B_{n}$ to A_{n}	see Figs 4 and 6	1.5	2.9	6.3	1.5	8.0	ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time $\overline{O E}$ to $A_{n} ; \overline{O E}$ to B_{n}	see Figs 5 and 6	1.5	4.0	8.5	1.5	11.0	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable time $\overline{O E}$ to $A_{n} ; \overline{O E}$ to B_{n}	see Figs 5 and 6	1.7	3.4	7.0	1.7	9.0	ns
$\mathrm{t}_{\text {sk(0) }}$	skew	note 2			1.0		1.5	ns

Notes

1. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.
2. Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

Octal bus transceiver with direction pin with 5 Volt tolerant input/outputs (3-state)

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{M}}=0.5 \mathrm{~V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.
Fig. 4 The inputs A_{n}, B_{n} to outputs B_{n}, A_{n} propagation delays.

Octal bus transceiver with direction pin with 5 Volt tolerant input/outputs (3-state)

SWITCH POSITION	
TEST	SWITCH
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\mathrm{PHL}}$	open
$\mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\mathrm{PZL}}$	$2 \times \mathrm{V}_{\mathrm{CC}}$
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\mathrm{PZH}}$	GND

$\mathbf{V}_{\mathbf{c c}}$	$\mathbf{V}_{\mathbf{I}}$
$<2.7 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$
$2.7-3.6 \mathrm{~V}$	2.7 V

Definitions for test circuits:
$R_{L}=$ Load resistor.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{T}=$ Termination resistance should be equal to the output impedance Z_{0} of the pulse generator.
Fig. 6 Load circuitry for switching times.

$$
\begin{array}{lr}
\text { Octal bus transceiver with direction pin with } 5 \text { Volt } & \text { 74LVC245A; } \\
\text { tolerant input/outputs (3-state) } & 74 \mathrm{LVCH} 245 \mathrm{~A}
\end{array}
$$

PACKAGE OUTLINES

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{z}^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.49 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT163-1	$075 E 04$	MS-013			-	

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	2.0	0.21	1.80	0.25	0.38	0.20	7.4	5.4	0.65	7.9	1.25	1.03	0.9	0.2	0.13	0.1	0.9	8°
	0.05	1.65	0.25	0.25	0.09	7.0	5.2	0.6	7.6		0.63	0.7	0.2	0.5	0°			

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT339-1		MO-150		\oplus	$\begin{aligned} & -95-02-04 \\ & 99-12-27 \end{aligned}$

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{2})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	1.10	0.15	0.95	0.25	0.30	0.2	6.6	4.5	0.65	6.6	1.0	0.75	0.4	0.2	0.13	0.1	0.5	8°
		0.05	0.80		0.19	0.1	6.4	4.3	0.6	6.2		0.50	0.3	0.2		0.2	0°	

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT360-1		MO-153		$\square \oplus$	$\begin{aligned} & -95-02-04 \\ & 99-12-27 \end{aligned}$

Octal bus transceiver with direction pin with 5 Volt 74LVC245A; tolerant input/outputs (3-state)

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.
Typical reflow peak temperatures range from
215 to $250^{\circ} \mathrm{C}$. The top-surface temperature of the packages should preferable be kept below $220^{\circ} \mathrm{C}$ for thick/large packages, and below $235^{\circ} \mathrm{C}$ for small/thin packages.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

Octal bus transceiver with direction pin with 5 Volt 74LVC245A; tolerant input/outputs (3-state)

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE ${ }^{(1)}$	SOLDERING METHOD	
	WAVE	REFLOW

Notes

1. For more detailed information on the BGA packages refer to the "(LF)BGA Application Note" (AN01026); order a copy from your Philips Semiconductors sales office.
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
6. Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .

Octal bus transceiver with direction pin with 5 Volt 74LVC245A; tolerant input/outputs (3-state)

DATA SHEET STATUS

DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS	
Objective data	Development	DEFINITIONS
Preliminary data	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.	
Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.	
	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Octal bus transceiver with direction pin with 5 Volt tolerant input/outputs (3-state)

NOTES

Octal bus transceiver with direction pin with 5 Volt tolerant input/outputs (3-state)

NOTES

Octal bus transceiver with direction pin with 5 Volt tolerant input/outputs (3-state)

NOTES

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

